Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx

نویسندگان

  • John S. Satterlee
  • Hiroyuki Sasakura
  • Atsushi Kuhara
  • Maura Berkeley
  • Ikue Mori
  • Piali Sengupta
چکیده

Temperature is a critical modulator of animal metabolism and behavior, yet the mechanisms underlying the development and function of thermosensory neurons are poorly understood. C. elegans senses temperature using the AFD thermosensory neurons. Mutations in the gene ttx-1 affect AFD neuron function. Here, we show that ttx-1 regulates all differentiated characteristics of the AFD neurons. ttx-1 mutants are defective in a thermotactic behavior and exhibit deregulated thermosensory inputs into a neuroendocrine signaling pathway. ttx-1 encodes a member of the conserved OTD/OTX homeodomain protein family and is expressed in the AFD neurons. Misexpression of ttx-1 converts other sensory neurons to an AFD-like fate. Our results extend a previously noted conservation of developmental mechanisms between the thermosensory circuit in C. elegans and the vertebrate photosensory circuit, suggesting an evolutionary link between thermosensation and phototransduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans.

The mechanisms by which the diverse functional identities of neurons are generated are poorly understood. C. elegans responds to thermal and chemical stimuli using 12 types of sensory neurons. The Otx/otd homolog ttx-1 specifies the identities of the AFD thermosensory neurons. We show here that ceh-36 and ceh-37, the remaining two Otx-like genes in the C. elegans genome, specify the identities ...

متن کامل

Glia delimit shape changes of sensory neuron receptive endings in C. elegans.

Neuronal receptive endings, such as dendritic spines and sensory protrusions, are structurally remodeled by experience. How receptive endings acquire their remodeled shapes is not well understood. In response to environmental stressors, the nematode Caenorhabditis elegans enters a diapause state, termed dauer, which is accompanied by remodeling of sensory neuron receptive endings. Here, we demo...

متن کامل

Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types

Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we descr...

متن کامل

Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene

Neural pathways, which couple temperature-sensing neurons to motor and autonomic outputs, allow animals to navigate away from and adjust metabolism rates in response to the temperature extremes often encountered. ttx-3 is required for the specification of the AIY interneuron in the C. elegans neural pathway that mediates thermoregulation. ttx-3 null mutant animals exhibit the same thermotactic ...

متن کامل

Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4.

Molecular and pharmacological studies in vitro suggest that protein kinase C (PKC) family members play important roles in intracellular signal transduction. Nevertheless, the in vivo roles of PKC are poorly understood. We show here that nPKC-epsilon/eta TTX-4 in the nematode Caenorhabditis elegans is required for the regulation of signal transduction in various sensory neurons for temperature, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2001